921 lines
42 KiB
Markdown
921 lines
42 KiB
Markdown
# Product Description
|
||
|
||
<img src="img/logo.png" alt="avaaz.ai" height="90" align="right"/>
|
||
|
||
<p>
|
||
<b>avaaz.ai</b> is a mobile and web application featuring a motivating <b>conversational AI tutor</b> powered by advanced agentic capabilities. It teaches oral language skills through structured, interactive lessons that adapt to each student’s pace and performance. The core goal is to help students speak new languages confidently to <b>pass the B2 oral proficiency exam</b>.
|
||
</p>
|
||
|
||
## 1. Features
|
||
|
||
1. **Voice-First Conversational Engine** — Students engage in ultra-low-latency speech-to-speech interaction with the AI Tutor, enabling natural dialogue and instant corrective feedback using speech, text, and visuals.
|
||
2. **CEFR-B2 Aligned Curriculum with Real-Time AI Practice** — A full CEFR-based speaking progression up to B2, seamlessly integrated with adaptive AI conversation to bridge passive knowledge and active speaking skills.
|
||
3. **Immigrant-Focused Real-Life Scenarios** — Lessons target real-world contexts relevant to immigrants, such as workplace, healthcare, school, or daily interactions, enhancing integration and confidence in practical use.
|
||
4. **Mock Oral Exam Mode** — Simulates B2 oral exams and citizenship interviews with timed prompts, rubrics, and examiner-style feedback to build test readiness.
|
||
5. **Multilingual Scaffolding and Integrated Translation** — Learners receive UI support, bilingual explanations, and on-demand translations in their native language, helping low-confidence speakers stay engaged.
|
||
6. **Comprehensive Speaking Feedback** — Beyond pronunciation and grammar, learners get targeted insights on fluency, phrasing, coherence, and vocabulary range, aligned with B2 standards.
|
||
7. **Accent and Cultural Adaptation** — Lessons reflect local dialects and cultural etiquette relevant to the learner’s destination country, supporting realistic and socially appropriate speech.
|
||
8. **Immersive Role-Plays with Visual Cues** — Speaking simulations are enhanced with contextual images (e.g. menus, documents, locations) to deepen realism and task-based practice.
|
||
9. **Gamified Progress and Motivation** — Daily speaking challenges, streak rewards, and level badges reinforce habit formation and learning consistency.
|
||
10. **Post-Session Performance Summaries** — After each session, learners receive a concise report of strengths, errors, and suggested improvements to reinforce progress.
|
||
11. **Customizable AI Tutor Voices** — Learners can choose from various voice options with different genders or regional accents to diversify listening practice and personalize interaction.
|
||
12. **Cross-Device Learning Continuity** — Seamless synchronization ensures progress tracking and learning state remain consistent across mobile and web platforms.
|
||
|
||
## 2. Student & AI Tutor Interactions (English → Norwegian Bokmål)
|
||
|
||
### 2.1 Real-Time Conversational Flow
|
||
|
||
**Scenario:** A beginner is learning everyday greetings.
|
||
|
||
**AI Tutor (in Norwegian):** “Hei! Hvordan går det?”
|
||
**Student:** “Uh… I think that means, ‘How are you?’”
|
||
**AI Tutor:** “Exactly! You can answer: *Jeg har det bra* — that means ‘I’m doing well.’ Try it: *Jeg har det bra.*”
|
||
**Student:** “Jeg har det bra.”
|
||
**AI Tutor:** “Flott! Literally, it means ‘I have it good.’ Norwegians use that to say they’re fine.”
|
||
|
||
**Benefit:** The AI provides instant translation and cultural context, helping English speakers grasp meaning and tone through natural conversation.
|
||
|
||
### 2.2 Adaptive Pronunciation, Fluency, and Grammar Support
|
||
|
||
**Scenario:** The learner practices sentence structure and pronunciation.
|
||
|
||
**AI Tutor:** “Let’s say: *Jeg bor i Oslo* — ‘I live in Oslo.’”
|
||
**Student:** “Jeg bor på Oslo.”
|
||
**AI Tutor:** “Almost right! We say *i Oslo*, not *på Oslo*. *I* means ‘in,’ while *på* means ‘on.’ Try again: *Jeg bor i Oslo.*”
|
||
**Student:** “Jeg bor i Oslo.”
|
||
**AI Tutor:** “Perfekt! Now, about pronunciation — it’s *Oslo*, not *Osh-lo.* The *s* is soft. Listen: *Oslo.*”
|
||
**Student:** “Oslo.”
|
||
**AI Tutor:** “Bra! That sounded natural.”
|
||
|
||
**Benefit:** The AI corrects grammar and pronunciation simultaneously, giving immediate, native-level feedback tailored to English-speaking learners.
|
||
|
||
### 2.3 Scenario-Based Oral Practice
|
||
|
||
**Scenario:** The learner prepares for a B2-level job interview.
|
||
|
||
**AI Tutor:** “Du er på et jobbintervju. Spørsmålet er: *Hvorfor vil du jobbe her?* — ‘Why do you want to work here?’”
|
||
**Student:** “Fordi jeg liker din selskap.”
|
||
**AI Tutor:** “Good start! In Norwegian, we say *firmaet ditt* instead of *din selskap*. Try: *Fordi jeg liker firmaet ditt og arbeidsmiljøet her.* — ‘Because I like your company and the work environment here.’”
|
||
**Student:** “Fordi jeg liker firmaet ditt og arbeidsmiljøet her.”
|
||
**AI Tutor:** “Veldig bra! That sounded confident and natural.”
|
||
|
||
**Benefit:** The learner rehearses authentic B2-level oral exam tasks and professional interactions with context-sensitive correction and adaptive feedback.
|
||
|
||
## 3. Pricing Plans
|
||
|
||
| **Plan** | **Hours** | **NOK** | **Purpose** |
|
||
| --------------------------------- | :-------: | ------------: | ------------------------------------------------------------------- |
|
||
| **First Light** | 1 | **Gratis** | A taste of the experience - no pressure, no card required. |
|
||
| **Spark** | 5 | **kr 999** | A short, flexible plan to get started or focus on specific skills. |
|
||
| **Glow** | 15 | **kr 1 999** | Great for consistent improvement and practicing real conversations. |
|
||
| **⭐ Shine** *(Recommended)* | 50 | **kr 5 999** | The sweet spot for building natural fluency and confidence. |
|
||
| **Radiance** | 200 | **kr 17 999** | Designed for dedicated learners seeking transformation. |
|
||
|
||
## 4. Configuration
|
||
|
||
### 4.1 Configure the VPS
|
||
|
||
#### 4.1.1 Configure the firewal at the VPS host
|
||
|
||
| Public IP |
|
||
| :------------: |
|
||
| 217.154.51.242 |
|
||
|
||
| Action | Allowed IP | Protocol | Port(s) | Description |
|
||
| :-----: | :--------: | :------: | ----------: | :------------ |
|
||
| Allow | Any | TCP | 80 | HTTP |
|
||
| Allow | Any | TCP | 443 | HTTPS |
|
||
| Allow | Any | TCP | 2222 | Git SSH |
|
||
| Allow | Any | TCP | 2885 | VPS SSH |
|
||
| Allow | Any | UDP | 3478 | STUN/TURN |
|
||
| Allow | Any | TCP | 5349 | TURN/TLS |
|
||
| Allow | Any | TCP | 7881 | LiveKit TCP |
|
||
| Allow | Any | UDP | 50000-60000 | LiveKit Media |
|
||
|
||
#### 4.1.2 Configure the DNS settings at domain registrar
|
||
|
||
| Host (avaaz.ai) | Type | Value |
|
||
| :-------------: | :---: | :------------: |
|
||
| @ | A | 217.154.51.242 |
|
||
| www | CNAME | avaaz.ai |
|
||
| app | A | 217.154.51.242 |
|
||
| api | A | 217.154.51.242 |
|
||
| rtc | A | 217.154.51.242 |
|
||
| git | A | 217.154.51.242 |
|
||
|
||
#### 4.1.3 Change the SSH port from 22 to 2885
|
||
|
||
1. Connect to the server.
|
||
|
||
```bash
|
||
ssh username@avaaz.ai
|
||
```
|
||
|
||
2. Edit the SSH configuration file.
|
||
|
||
```bash
|
||
sudo nano /etc/ssh/sshd_config
|
||
```
|
||
|
||
3. Add port 2885 to the file and comment out port 22.
|
||
|
||
```text
|
||
#Port 22
|
||
Port 2885
|
||
```
|
||
|
||
4. Save the file and exit the editor.
|
||
|
||
- Press `Ctrl+O`, then `Enter` to save, and `Ctrl+X` to exit.
|
||
|
||
5. Restart the SSH service.
|
||
|
||
```bash
|
||
sudo systemctl daemon-reload && sudo systemctl restart ssh.socket && sudo systemctl restart ssh.service
|
||
```
|
||
|
||
6. **Before closing the current session**, open a new terminal window and connect to the server to verify the changes work correctly.
|
||
|
||
```bash
|
||
ssh username@avaaz.ai # ssh: connect to host avaaz.ai port 22: Connection timed out
|
||
ssh username@avaaz.ai -p 2885
|
||
```
|
||
|
||
7. Once the connection is successful, close the original session safely.
|
||
|
||
#### 4.1.4 Build and deploy the infrastructure
|
||
|
||
1. Check with `dig git.avaaz.ai +short` wether the DNS settings have been propagated.
|
||
|
||
2. SSH into the VPS to install Docker & docker compose.
|
||
|
||
```bash
|
||
ssh username@avaaz.ai -p 2885
|
||
```
|
||
|
||
3. Update system packages.
|
||
|
||
```bash
|
||
sudo apt update && sudo apt upgrade -y
|
||
```
|
||
|
||
4. Install dependencies for Docker’s official repo
|
||
|
||
```bash
|
||
sudo apt install -y \
|
||
ca-certificates \
|
||
curl \
|
||
gnupg \
|
||
lsb-release
|
||
```
|
||
|
||
5. Add Docker’s official APT repo.
|
||
|
||
```bash
|
||
sudo install -m 0755 -d /etc/apt/keyrings
|
||
|
||
curl -fsSL https://download.docker.com/linux/ubuntu/gpg \
|
||
sudo gpg --dearmor -o /etc/apt/keyrings/docker.gpg
|
||
|
||
echo \
|
||
"deb [arch=$(dpkg --print-architecture) \
|
||
signed-by=/etc/apt/keyrings/docker.gpg] \
|
||
https://download.docker.com/linux/ubuntu \
|
||
$(lsb_release -cs) stable" \
|
||
sudo tee /etc/apt/sources.list.d/docker.list > /dev/null
|
||
|
||
sudo apt update
|
||
```
|
||
|
||
6. Install Docker Engine + compose plugin.
|
||
|
||
```bash
|
||
sudo apt install -y \
|
||
docker-ce \
|
||
docker-ce-cli \
|
||
containerd.io \
|
||
docker-buildx-plugin \
|
||
docker-compose-plugin
|
||
```
|
||
|
||
7. Verify the installation.
|
||
|
||
```bash
|
||
sudo docker --version
|
||
sudo docker compose version
|
||
```
|
||
|
||
8. Create the `/etc/docker/daemon.json` file to avoid issues with overusing disk for log data.
|
||
|
||
```bash
|
||
sudo nano /etc/docker/daemon.json
|
||
```
|
||
|
||
9. Paste the following.
|
||
|
||
```json
|
||
{
|
||
"log-driver": "local",
|
||
"log-opts": {
|
||
"max-size": "10m",
|
||
"max-file": "3"
|
||
}
|
||
}
|
||
```
|
||
|
||
10. Save the file and exit the editor.
|
||
|
||
- Press `Ctrl+O`, then `Enter` to save, and `Ctrl+X` to exit.
|
||
|
||
11. Restart the docker service to apply changes.
|
||
|
||
```bash
|
||
sudo systemctl daemon-reload
|
||
sudo systemctl restart docker
|
||
```
|
||
|
||
12. Create directory for infra stack in `/srv/infra`.
|
||
|
||
```bash
|
||
sudo mkdir -p /srv/infra
|
||
sudo chown -R $USER:$USER /srv/infra
|
||
cd /srv/infra
|
||
```
|
||
|
||
13. Create directories for Gitea (repos, config, etc.) and Runner persistent data. Gitea runs as UID/GID 1000 by default.
|
||
|
||
```bash
|
||
mkdir -p gitea-data gitea-runner-data
|
||
```
|
||
|
||
14. Create the `/srv/infra/docker-compose.yml` (Caddy + Gitea + Runner) file.
|
||
|
||
```bash
|
||
nano docker-compose.yml
|
||
```
|
||
|
||
15. Paste the following.
|
||
|
||
```yaml
|
||
services:
|
||
caddy:
|
||
# Use the latest official Caddy image
|
||
image: caddy:latest
|
||
# Docker Compose automatically generates container names: <folder>_<service>_<index>
|
||
container_name: caddy # Fixed name used by Docker engine
|
||
# Automatically restart unless manually stopped
|
||
restart: unless-stopped
|
||
ports:
|
||
# Expose HTTP (ACME + redirect)
|
||
- "80:80"
|
||
# Expose HTTPS/WSS (frontend, backend, LiveKit)
|
||
- "443:443"
|
||
volumes:
|
||
# Mount the Caddy config file read-only
|
||
- ./Caddyfile:/etc/caddy/Caddyfile:ro
|
||
# Caddy TLS certs (persistent Docker volume)
|
||
- caddy_data:/data
|
||
# Internal Caddy state/config
|
||
- caddy_config:/config
|
||
networks:
|
||
# Attach to the shared "proxy" network
|
||
- proxy
|
||
|
||
gitea:
|
||
# Official Gitea image with built-in Actions
|
||
image: gitea/gitea:latest
|
||
container_name: gitea # Fixed name used by Docker engine
|
||
# Auto-restart service
|
||
restart: unless-stopped
|
||
environment:
|
||
# Run Gitea as host user 1000 (prevents permission issues)
|
||
- USER_UID=1000
|
||
# Same for group
|
||
- USER_GID=1000
|
||
# Use SQLite (stored inside /data)
|
||
- GITEA__database__DB_TYPE=sqlite3
|
||
# Location of the SQLite DB
|
||
- GITEA__database__PATH=/data/gitea/gitea.db
|
||
# Custom config directory
|
||
- GITEA_CUSTOM=/data/gitea
|
||
volumes:
|
||
# Bind mount instead of Docker volume because:
|
||
# - We want repos, configs, SSH keys, and SQLite DB **visible and editable** on host
|
||
# - Easy backups (just copy `./gitea-data`)
|
||
# - Easy migration
|
||
# - Avoids losing data if Docker volumes are pruned
|
||
- ./gitea-data:/data
|
||
networks:
|
||
- proxy
|
||
ports:
|
||
# SSH for Git operations mapped to host 2222
|
||
- "2222:22"
|
||
|
||
gitea-runner:
|
||
# Official Gitea Actions Runner
|
||
image: gitea/act_runner:latest
|
||
container_name: gitea-runner # Fixed name used by Docker engine
|
||
restart: unless-stopped
|
||
depends_on:
|
||
# Runner requires Gitea to be available
|
||
- gitea
|
||
volumes:
|
||
# Runner uses host Docker daemon to spin up job containers (Docker-out-of-Docker)
|
||
- /var/run/docker.sock:/var/run/docker.sock
|
||
# Bind mount instead of volume because:
|
||
# - Runner identity is stored in /data/.runner
|
||
# - Must persist across container recreations
|
||
# - Prevents duplicated runner registrations in Gitea
|
||
# - Easy to inspect/reset via `./gitea-runner-data/.runner`
|
||
- ./gitea-runner-data:/data
|
||
environment:
|
||
# Base URL of your Gitea instance
|
||
- GITEA_INSTANCE_URL=${GITEA_INSTANCE_URL}
|
||
# One-time registration token
|
||
- GITEA_RUNNER_REGISTRATION_TOKEN=${GITEA_RUNNER_REGISTRATION_TOKEN}
|
||
# Human-readable name for the runner
|
||
- GITEA_RUNNER_NAME=${GITEA_RUNNER_NAME}
|
||
# Runner labels (e.g., ubuntu-latest)
|
||
- GITEA_RUNNER_LABELS=${GITEA_RUNNER_LABELS}
|
||
# Set container timezone to UTC for consistent logs
|
||
- TZ=Etc/UTC
|
||
networks:
|
||
- proxy
|
||
# Start runner using persisted config
|
||
command: ["act_runner", "daemon", "--config", "/data/.runner"]
|
||
|
||
networks:
|
||
proxy:
|
||
# Shared network for Caddy + Gitea (+ later app stack)
|
||
name: proxy
|
||
# Default Docker bridge network
|
||
driver: bridge
|
||
|
||
volumes:
|
||
# Docker volume for Caddy TLS data (safe to keep inside Docker)
|
||
caddy_data:
|
||
name: caddy_data
|
||
# Docker volume for internal Caddy configs/state
|
||
caddy_config:
|
||
name: caddy_config
|
||
```
|
||
|
||
16. Save the file and exit the editor.
|
||
|
||
- Press `Ctrl+O`, then `Enter` to save, and `Ctrl+X` to exit.
|
||
|
||
17. Create the `/srv/infra/.env` file with environment variables.
|
||
|
||
```bash
|
||
nano .env
|
||
```
|
||
|
||
18. Paste the following:
|
||
|
||
```env
|
||
# Base URL of your Gitea instance (used by the runner to register itself
|
||
# and to send/receive workflow job information).
|
||
GITEA_INSTANCE_URL=https://git.avaaz.ai
|
||
|
||
# One-time registration token generated in:
|
||
# Gitea → Site Administration → Actions → Runners → "Generate Token"
|
||
# This MUST be filled in once, so the runner can register.
|
||
# After registration, the runner stores its identity inside ./gitea-runner-data/.runner
|
||
# and this value is no longer needed (can be left blank).
|
||
GITEA_RUNNER_REGISTRATION_TOKEN=
|
||
|
||
# Human-readable name for this runner.
|
||
# This is shown in the Gitea UI so you can distinguish multiple runners:
|
||
# Example: "vps-runner", "staging-runner", "gpu-runner"
|
||
GITEA_RUNNER_NAME=gitea-runner
|
||
|
||
# Runner labels allow workflows to choose specific runners.
|
||
# The label format is: label[:schema[:args]]
|
||
# - "ubuntu-latest" is the <label> name that workflows request using runs-on: [ "ubuntu-latest" ].
|
||
# - "docker://" is the <schema> indicating the job runs inside a separate Docker container.
|
||
# - "catthehacker/ubuntu:act-latest" is the <args>, specifying the Docker image to use for the container.
|
||
# Workflows can target this using:
|
||
# runs-on: [ "ubuntu-latest" ]
|
||
GITEA_RUNNER_LABELS=ubuntu-latest:docker://catthehacker/ubuntu:act-latest
|
||
```
|
||
|
||
19. Save the file and exit the editor.
|
||
|
||
- Press `Ctrl+O`, then `Enter` to save, and `Ctrl+X` to exit.
|
||
|
||
20. Create `/srv/infra/Caddyfile` to configure Caddy.
|
||
|
||
```bash
|
||
nano Caddyfile
|
||
```
|
||
|
||
21. Paste the following:
|
||
|
||
```caddy
|
||
{
|
||
# Global Caddy options.
|
||
#
|
||
# auto_https on
|
||
# - Caddy listens on port 80 for every host (ACME + redirect).
|
||
# - Automatically issues HTTPS certificates.
|
||
# - Automatically redirects HTTP → HTTPS unless disabled.
|
||
#
|
||
}
|
||
|
||
# ------------------------------------------------------------
|
||
# Redirect www → root domain
|
||
# ------------------------------------------------------------
|
||
www.avaaz.ai {
|
||
# Permanent redirect to naked domain
|
||
redir https://avaaz.ai{uri} permanent
|
||
}
|
||
|
||
# ------------------------------------------------------------
|
||
# Marketing site (optional — if frontend handles it, remove this)
|
||
# Redirect root → app
|
||
# ------------------------------------------------------------
|
||
avaaz.ai {
|
||
# If you have a static marketing page, serve it here.
|
||
# If not, redirect visitors to the app.
|
||
redir https://app.avaaz.ai{uri}
|
||
}
|
||
|
||
# ------------------------------------------------------------
|
||
# Frontend (Next.js)
|
||
# Public URL: https://app.avaaz.ai
|
||
# Internal target: frontend:3000
|
||
# ------------------------------------------------------------
|
||
app.avaaz.ai {
|
||
# Reverse-proxy HTTPS traffic to the frontend container
|
||
reverse_proxy frontend:3000
|
||
|
||
# Access log for debugging frontend activity
|
||
log {
|
||
output file /data/app-access.log
|
||
}
|
||
|
||
# Compression for faster delivery of JS, HTML, etc.
|
||
encode gzip zstd
|
||
}
|
||
|
||
# ------------------------------------------------------------
|
||
# Backend (FastAPI)
|
||
# Public URL: https://api.avaaz.ai
|
||
# Internal target: backend:8000
|
||
# ------------------------------------------------------------
|
||
api.avaaz.ai {
|
||
# Reverse-proxy all API traffic to FastAPI
|
||
reverse_proxy backend:8000
|
||
|
||
# Access log — useful for monitoring API traffic and debugging issues
|
||
log {
|
||
output file /data/api-access.log
|
||
}
|
||
|
||
# Enable response compression (JSON, text, etc.)
|
||
encode gzip zstd
|
||
}
|
||
|
||
# ------------------------------------------------------------
|
||
# LiveKit (signaling only — media uses direct UDP)
|
||
# Public URL: wss://rtc.avaaz.ai
|
||
# Internal target: livekit:7880
|
||
# ------------------------------------------------------------
|
||
rtc.avaaz.ai {
|
||
# LiveKit uses WebSocket signaling, so we reverse-proxy WS → WS
|
||
reverse_proxy livekit:7880
|
||
|
||
# Access log — helps diagnose WebRTC connection failures
|
||
log {
|
||
output file /data/rtc-access.log
|
||
}
|
||
|
||
# Compression not needed for WS traffic, but harmless
|
||
encode gzip zstd
|
||
}
|
||
|
||
# ------------------------------------------------------------
|
||
# Gitea (Git server UI + HTTPS + SSH clone)
|
||
# Public URL: https://git.avaaz.ai
|
||
# Internal target: gitea:3000
|
||
# ------------------------------------------------------------
|
||
git.avaaz.ai {
|
||
# Route all HTTPS traffic to Gitea’s web UI
|
||
reverse_proxy gitea:3000
|
||
|
||
# Log all Git UI requests and API access
|
||
log {
|
||
output file /data/git-access.log
|
||
}
|
||
|
||
# Compress UI responses
|
||
encode gzip zstd
|
||
}
|
||
```
|
||
|
||
22. Save the file and exit the editor.
|
||
|
||
- Press `Ctrl+O`, then `Enter` to save, and `Ctrl+X` to exit.
|
||
|
||
23. Start the stack from `/srv/infra`.
|
||
|
||
```bash
|
||
sudo docker compose pull # fetch images: caddy, gitea, act_runner
|
||
sudo docker compose up -d # start all containers in the background
|
||
```
|
||
|
||
24. Verify that the status of all the containers are `Up`.
|
||
|
||
```bash
|
||
sudo docker compose ps -a
|
||
```
|
||
|
||
25. Open `https://git.avaaz.ai` in your browser. Caddy should have already obtained a cert and you should see the Gitea installer.
|
||
|
||
26. Configure database settings.
|
||
|
||
- **Database Type:** `SQLite3`
|
||
- **Path:** `/data/gitea/gitea.db` *(matches `GITEA__database__PATH`)*
|
||
|
||
27. Configure general settings.
|
||
|
||
- **Site Title:** default *(`Gitea: Git with a cup of tea`)*
|
||
- **Repository Root Path:** default *(`/data/git/repositories`)*
|
||
- **LFS Root Path:** default *(`/data/git/lfs`)*
|
||
|
||
28. Configure server settings.
|
||
|
||
- **Domain:** `git.avaaz.ai` *(external HTTPS via Caddy)*
|
||
- **SSH Port:** `2222` *(external SSH port)*
|
||
- **HTTP Port:** `3000` *(internal HTTP port)*
|
||
- **Gitea Base URL / ROOT_URL:** `https://git.avaaz.ai/`
|
||
|
||
29. Create the admin account (username + password + email) and finish installation.
|
||
|
||
30. Edit Gitea `/data/gitea/conf/app.ini` at the host bind mount `/srv/infra/gitea-data/gitea/conf/app.ini`.
|
||
|
||
```bash
|
||
nano gitea-data/gitea/conf/app.ini
|
||
```
|
||
|
||
31. Add/verify the following sections.
|
||
|
||
```ini
|
||
[server]
|
||
; Gitea serves HTTP internally (Caddy handles HTTPS externally)
|
||
PROTOCOL = http
|
||
; External hostname used for links and redirects
|
||
DOMAIN = git.avaaz.ai
|
||
; Hostname embedded in SSH clone URLs
|
||
SSH_DOMAIN = git.avaaz.ai
|
||
; Internal container port Gitea listens on (Caddy reverse-proxies to this)
|
||
HTTP_PORT = 3000
|
||
; Public-facing base URL (MUST be HTTPS when behind Caddy)
|
||
ROOT_URL = https://git.avaaz.ai/
|
||
; Enable Gitea's built-in SSH server inside the container
|
||
DISABLE_SSH = false
|
||
; Host-side SSH port exposed by Docker (mapped to container:22)
|
||
SSH_PORT = 2222
|
||
; Container-side SSH port (always 22 inside the container)
|
||
SSH_LISTEN_PORT = 22
|
||
|
||
[database]
|
||
; SQLite database file stored in bind-mounted volume
|
||
PATH = /data/gitea/gitea.db
|
||
; Using SQLite (sufficient for single-node small/medium setups)
|
||
DB_TYPE = sqlite3
|
||
|
||
[security]
|
||
; Prevent web-based reinstallation (crucial for a secured instance)
|
||
INSTALL_LOCK = true
|
||
; Auto-generated on first startup; DO NOT change or delete
|
||
SECRET_KEY =
|
||
|
||
[actions]
|
||
; Enable Gitea Actions (CI/CD)
|
||
ENABLED = true
|
||
; Default platform to get action plugins, github for https://github.com, self for the current Gitea instance.
|
||
DEFAULT_ACTIONS_URL = github
|
||
```
|
||
|
||
32. Restart Gitea to apply changes.
|
||
|
||
```bash
|
||
sudo docker compose restart gitea
|
||
```
|
||
|
||
33. Check if Actions is enabled.
|
||
|
||
1. Log in as admin at `https://git.avaaz.ai`.
|
||
2. Go to **Site Administration**.
|
||
3. Look for a menu item **Actions**. If `[actions] ENABLED = true` in `app.ini`, there will be options related to **Runners**, allowing management of instance-level action runners. Otherwise, the Actions menu item in the Site Administration panel will not appear, indicating the feature is globally disabled.
|
||
|
||
34. Get registration token to register the Gitea Actions runner and create a *user* account.
|
||
|
||
1. Log in as admin at `https://git.avaaz.ai`.
|
||
2. Go to **Site Administration → Actions → Runners**.
|
||
3. Choose **Create new Runner**.
|
||
4. Copy the **Registration Token**.
|
||
5. Create a *user* account.
|
||
|
||
35. Edit `.env` to add the token.
|
||
|
||
```bash
|
||
nano .env
|
||
```
|
||
|
||
36. Paste the Registration Token after `=` without spaces.
|
||
|
||
```env
|
||
# One-time registration token generated in:
|
||
# Gitea → Site Administration → Actions → Runners → "Generate Token"
|
||
# This MUST be filled in once, so the runner can register.
|
||
# After registration, the runner stores its identity inside ./gitea-runner-data/.runner
|
||
# and this value is no longer needed (can be left blank).
|
||
GITEA_RUNNER_REGISTRATION_TOKEN=
|
||
```
|
||
|
||
37. Check for configuration changes and restart the container `gitea-runner`.
|
||
|
||
```bash
|
||
sudo docker compose up -d gitea-runner
|
||
```
|
||
|
||
38. Confirm that the Gitea instance URL, Runner name, and Runner labels in `gitea-runner-data/.runner` file are the same as the values in the `.env` file. Fix it using `nano gitea-runner-data/.runner` if different.
|
||
|
||
39. Verify that the Runner is connected to `https://git.avaaz.ai` and is polling for jobs.
|
||
|
||
```bash
|
||
sudo docker logs -f gitea-runner
|
||
```
|
||
|
||
40. Generate an SSH key on laptop. Accept the defaults and optionally set a passphrase. The public key is placed in `~/.ssh/id_ed25519.pub`.
|
||
|
||
```bash
|
||
ssh-keygen -t ed25519 -C "user@avaaz.ai"
|
||
```
|
||
|
||
41. Add the public key to Gitea.
|
||
|
||
1. Log into `https://git.avaaz.ai` as *user*.
|
||
2. Go to **Profile → Settings → SSH / GPG Keys → Add Key**.
|
||
3. Paste the contents starting with `ssh-ed25519` in `~/.ssh/id_ed25519.pub`.
|
||
4. Save.
|
||
|
||
42. Test SSH remote on laptop.
|
||
|
||
```bash
|
||
ssh -T -p 2222 git@git.avaaz.ai
|
||
```
|
||
|
||
43. Type `yes` to tell SSH client to trust the fingerprint and press `Enter`. Enter the passphrase and verify the response *You've successfully authenticated..., but Gitea does not provide shell access.*
|
||
|
||
44. Confirm that Gitea’s **clone URLs** of a repo show `ssh://git@git.avaaz.ai:2222/<user>/<repo>.git`.
|
||
|
||
45. Upgrade Docker images safely.
|
||
|
||
```bash
|
||
sudo docker compose pull # pull newer images
|
||
sudo docker compose up -d # recreate containers with new images
|
||
```
|
||
|
||
46. Restart the whole infra stack.
|
||
|
||
```bash
|
||
sudo docker compose restart # restart all containers
|
||
```
|
||
|
||
47. Check logs for troubleshooting.
|
||
|
||
```bash
|
||
sudo docker logs -f caddy # shows “obtaining certificate” or ACME errors if HTTPS fails.
|
||
sudo docker logs -f gitea # shows DB/permissions problems, config issues, etc.
|
||
sudo docker logs -f gitea-runner # shows registration/connection/job-execution issues.
|
||
```
|
||
|
||
#### 4.1.5 Validate the infrastructure
|
||
|
||
1. Confirm that all containers `caddy`, `gitea`, and `gitea-runner` are `Up`.
|
||
|
||
```bash
|
||
sudo docker compose ps -a
|
||
```
|
||
|
||
2. Confirm that `https://git.avaaz.ai` shows Gitea login page with a valid TLS cert (padlock icon) when opened in a browser.
|
||
|
||
3. Confirm the response *You've successfully authenticated..., but Gitea does not provide shell access.* when connecting to Gitea over SSH.
|
||
|
||
```bash
|
||
ssh -T -p 2222 git@git.avaaz.ai
|
||
```
|
||
|
||
4. Create a `test` repo in Gitea and confirm cloning it.
|
||
|
||
```bash
|
||
git clone ssh://git@git.avaaz.ai:2222/<your-user>/test.git
|
||
```
|
||
|
||
5. Confirm that the Actions runner `gitea-runner` is registered and online with status **Idle**.
|
||
|
||
1. Log in as admin at `https://git.avaaz.ai`.
|
||
2. Go to **Site Administration → Actions → Runners**.
|
||
|
||
6. Add `.gitea/workflows/test.yml` to the `test` repo root, commit and push.
|
||
|
||
```yaml
|
||
# Workflow Name
|
||
name: Test Workflow
|
||
|
||
# Trigger on a push event to any branch
|
||
on:
|
||
push:
|
||
branches:
|
||
# This means 'any branch'
|
||
- '**'
|
||
|
||
# Define the jobs to run
|
||
jobs:
|
||
hello:
|
||
# Specify the runner image to use
|
||
runs-on: [ "ubuntu-latest" ]
|
||
|
||
# Define the steps for this job
|
||
steps:
|
||
- name: Run a Test Script
|
||
run: echo "Hello from Gitea Actions!"
|
||
```
|
||
|
||
7. Confirm a workflow run appears in Gitea → test repo → **Actions** tab and progresses from queued → in progress → success.
|
||
|
||
8. Confirm the logs show the job picked up, container created, and the “Hello from Gitea Actions!” output.
|
||
|
||
```bash
|
||
sudo docker logs -f gitea-runner
|
||
```
|
||
|
||
### 4.2 Configure the Development Laptop
|
||
|
||
#### 4.2.1 Run Applicaiton
|
||
|
||
1. Removes all cached Python packages stored by pip, removes local Python cache files, clears the cache used by uv, and forcibly clear the cache for Node.js.
|
||
|
||
```bash
|
||
uv tool install cleanpy
|
||
pip cache purge && cleanpy . && uv cache clean && npm cache clean --force
|
||
```
|
||
|
||
2. Resolve dependencies from your *pyproject.toml* and upgrade all packages. Synchronize the virtual environment with the dependencies specified in the *uv.lock* including packages needed for development.
|
||
|
||
```bash
|
||
cd backend
|
||
uv lock --upgrade
|
||
uv sync --dev
|
||
```
|
||
|
||
3. Lint and check code for errors, style issues, and potential bugs, and try to fix them. Discover and run tests in *tests/*.
|
||
|
||
```bash
|
||
cd backend
|
||
uv run ruff check --fix && uv run pytest
|
||
```
|
||
|
||
4. Starts a local development API server, visible at port 8000, and automatically reloads the server as you make code changes.
|
||
|
||
```bash
|
||
cd backend
|
||
uv run uvicorn src.main:app --reload --port 8000
|
||
```
|
||
|
||
5. Scans dependencies for security vulnerabilities and attempts to automatically fix them by force-updating to the latest secure versions.
|
||
|
||
```bash
|
||
cd frontend
|
||
npm audit fix --force
|
||
```
|
||
|
||
6. Install dependencies from *package.json*, then update those dependencies to the latest allowed versions based on version ranges. Next, check the source code for stylistic and syntax errors according to configured rules. Finally, compile or bundle the application for deployment or production use.
|
||
|
||
```bash
|
||
cd frontend
|
||
npm install && npm update && npm run lint && npm run build
|
||
```
|
||
|
||
7. Execute start script in *package.json*, launch your Node.js application in production mode.
|
||
|
||
```bash
|
||
cd frontend
|
||
npm run start
|
||
```
|
||
|
||
## 5. Example Project Structure
|
||
|
||
```bash
|
||
avaaz.ai/
|
||
├── .dockerignore # Specifies files and directories to exclude from Docker builds, such as .git, node_modules, and build artifacts, to optimize image sizes.
|
||
├── .gitignore # Lists files and patterns to ignore in Git, including .env, __pycache__, node_modules, and logs, preventing sensitive or temporary files from being committed.
|
||
├── .gitattributes # Controls Git’s handling of files across platforms (e.g. normalizing line endings with * text=auto), and can force certain files to be treated as binary or configure diff/merge drivers.
|
||
│
|
||
├── .env.example # Template for environment variables, showing required keys like DATABASE_URL, GEMINI_API_KEY, LIVEKIT_API_KEY without actual values.
|
||
├── docker-compose.dev.yml # Docker Compose file for development environment: defines services for local frontend, backend, postgres, livekit with volume mounts for hot-reloading.
|
||
├── docker-compose.prod.yml # Docker Compose file for production: defines services for caddy, gitea (if integrated), frontend, backend, postgres, livekit with optimized settings and no volumes for code.
|
||
├── README.md # Project overview: includes setup instructions, architecture diagram (embed the provided Mermaid), contribution guidelines, and deployment steps.
|
||
│
|
||
├── .gitea/ # Directory for Gitea-specific configurations, as the repo is hosted on Gitea.
|
||
│ └── workflows/ # Contains YAML files for Gitea Actions workflows, enabling CI/CD pipelines.
|
||
│ ├── ci.yml # Workflow for continuous integration: runs tests, linting (Ruff), type checks, and builds on pull requests or pushes.
|
||
│ └── cd.yml # Workflow for continuous deployment: triggers builds and deploys Docker images to the VPS on merges to main.
|
||
│
|
||
├── .vscode/ # Editor configuration for VS Code to standardize the development environment for all contributors.
|
||
│ ├── extensions.json # Recommends VS Code extensions (e.g. Python, ESLint, Docker, GitLens) so developers get linting, formatting, and container tooling out of the box.
|
||
│ └── settings.json # Workspace-level VS Code settings: formatter on save, path aliases, Python/TypeScript language server settings, lint integration (Ruff, ESLint), and file exclusions.
|
||
│
|
||
├── backend/ # Root for the FastAPI backend, following Python best practices for scalable applications (inspired by FastAPI's "Bigger Applications" guide).
|
||
│ ├── Dockerfile # Builds the backend container: installs UV, copies pyproject.toml, syncs dependencies, copies source code, sets entrypoint to Gunicorn/Uvicorn.
|
||
│ ├── pyproject.toml # Project metadata and dependencies: uses UV for dependency management, specifies FastAPI, SQLAlchemy, Pydantic, LiveKit-Agent, etc.; includes [tool.uv], [tool.ruff] sections for config.
|
||
│ ├── uv.lock # Lockfile generated by UV, ensuring reproducible dependencies across environments.
|
||
│ ├── ruff.toml # Configuration for Ruff linter and formatter (can be in pyproject.toml): sets rules for Python code style, ignoring certain errors if needed.
|
||
│ ├── alembic.ini # Configuration for Alembic migrations: points to SQLAlchemy URL and script location.
|
||
│ ├── alembic/ # Directory for database migrations using Alembic, integrated with SQLAlchemy.
|
||
│ │ ├── env.py # Alembic environment script: sets up the migration context with SQLAlchemy models and pgvector support.
|
||
│ │ ├── script.py.mako # Template for generating migration scripts.
|
||
│ │ └── versions/ # Auto-generated migration files: each represents a database schema change, e.g., create_tables.py.
|
||
│ ├── src/ # Source code package: keeps business logic isolated, importable as 'from src import ...'.
|
||
│ │ ├── __init__.py # Makes src a package.
|
||
│ │ ├── main.py # FastAPI app entrypoint: initializes app, includes routers, sets up middleware, connects to Gemini Live via prompts.
|
||
│ │ ├── config.py # Application settings: uses Pydantic-settings to load from .env, e.g., DB_URL, API keys for Gemini, LiveKit, Stripe (for pricing plans).
|
||
│ │ ├── api/ # API-related modules: organizes endpoints and dependencies.
|
||
│ │ │ ├── __init__.py # Package init.
|
||
│ │ │ ├── dependencies.py # Global dependencies: e.g., current_user via FastAPI Users, database session.
|
||
│ │ │ └── v1/ # Versioned API: allows future versioning without breaking changes.
|
||
│ │ │ └── routers/ # API routers: modular endpoints.
|
||
│ │ │ ├── auth.py # Handles authentication: uses FastAPI Users for JWT/OAuth, user registration/login.
|
||
│ │ │ ├── users.py # User management: progress tracking, plan subscriptions.
|
||
│ │ │ ├── lessons.py # Lesson endpoints: structured oral language lessons, progress tracking.
|
||
│ │ │ ├── chat.py # Integration with LiveKit and Gemini: handles conversational AI tutor sessions.
|
||
│ │ │ └── documents.py # Document upload and processing: endpoints for file uploads, using Docling for parsing and semantic search prep.
|
||
│ │ ├── core/ # Core utilities: shared across the app.
|
||
│ │ │ ├── __init__.py # Package init.
|
||
│ │ │ └── security.py # Security functions: hashing, JWT handling via FastAPI Users.
|
||
│ │ ├── db/ # Database layer: SQLAlchemy setup with pgvector for vector embeddings (e.g., for AI tutor memory).
|
||
│ │ │ ├── __init__.py # Package init.
|
||
│ │ │ ├── base.py # Base model class for SQLAlchemy declarative base.
|
||
│ │ │ ├── session.py # Database session management: async session maker.
|
||
│ │ │ └── models/ # SQLAlchemy models.
|
||
│ │ │ ├── __init__.py # Exports all models.
|
||
│ │ │ ├── user.py # User model: includes fields for progress, plan, proficiency.
|
||
│ │ │ ├── lesson.py # Lesson and session models: tracks user interactions, B2 exam prep.
|
||
│ │ │ └── document.py # Document chunk model: for semantic search, with text, metadata, embedding (pgvector).
|
||
│ │ ├── schemas/ # Pydantic schemas: for API validation and serialization.
|
||
│ │ │ ├── __init__.py # Exports schemas.
|
||
│ │ │ ├── user.py # User schemas: create, read, update.
|
||
│ │ │ ├── lesson.py # Lesson schemas: input/output for AI interactions.
|
||
│ │ │ └── document.py # Document schemas: for upload responses and search queries.
|
||
│ │ └── services/ # Business logic services: decoupled from API.
|
||
│ │ ├── __init__.py # Package init.
|
||
│ │ ├── llm.py # Gemini Live integration: prompt engineering for conversational tutor.
|
||
│ │ ├── payment.py # Handles pricing plans: integrates with Stripe for subscriptions (Spark, Glow, etc.).
|
||
│ │ └── document.py # Docling processing: parses files, chunks, embeds (via Gemini), stores for semantic search.
|
||
│ └── tests/ # Unit and integration tests: uses pytest, Hypothesis for property-based testing, httpx for API testing.
|
||
│ ├── __init__.py # Package init.
|
||
│ ├── conftest.py # Pytest fixtures: e.g., test database, mock Gemini.
|
||
│ └── test_users.py # Example test file: tests user endpoints.
|
||
│
|
||
├── frontend/ # Root for Next.js frontend and PWA, following Next.js app router best practices (2025 standards: improved SSR, layouts).
|
||
│ ├── Dockerfile # Builds the frontend container: installs dependencies, builds Next.js, serves with Node.
|
||
│ ├── .eslintrc.json # ESLint configuration: extends next/core-web-vitals, adds rules for code quality.
|
||
│ ├── next.config.js # Next.js config: enables PWA, images optimization, API routes if needed.
|
||
│ ├── package.json # Node dependencies: includes next, react, @livekit/client for WebRTC, axios or fetch for API calls.
|
||
│ ├── package-lock.json # Lockfile for reproducible npm installs.
|
||
│ ├── tsconfig.json # TypeScript config: targets ES2022, includes paths for components.
|
||
│ ├── app/ # App router directory: pages, layouts, loading states.
|
||
│ │ ├── globals.css # Global styles: Tailwind or CSS modules.
|
||
│ │ ├── layout.tsx # Root layout: includes providers, navigation.
|
||
│ │ ├── page.tsx # Home page: landing for avaaz.ai.
|
||
│ │ └── components/ # Reusable UI components.
|
||
│ │ ├── ChatInterface.tsx # Component for conversational tutor using LiveKit WebRTC.
|
||
│ │ └── ProgressTracker.tsx # Tracks user progress toward B2 exam.
|
||
│ ├── lib/ # Utility functions: API clients, hooks.
|
||
│ │ └── api.ts # API client: typed fetches to backend endpoints.
|
||
│ └── public/ # Static assets.
|
||
│ ├── favicon.ico # Site icon.
|
||
│ └── manifest.json # PWA manifest: for mobile app-like experience.
|
||
│
|
||
├── infra/ # Infrastructure configurations: Dockerfiles and configs for supporting services, keeping them separate for scalability.
|
||
│ ├── caddy/ # Caddy reverse proxy setup.
|
||
│ │ ├── Dockerfile # Extends official Caddy image, copies Caddyfile.
|
||
│ │ └── Caddyfile # Caddy config: routes www.avaaz.ai to frontend, api.avaaz.ai to backend, WSS to LiveKit; auto HTTPS.
|
||
│ ├── gitea/ # Gitea git server (added for customization if needed; otherwise use official image directly in Compose).
|
||
│ │ ├── Dockerfile # Optional: Extends official Gitea image, copies custom config for Actions integration.
|
||
│ │ └── app.ini # Gitea config: sets up server, database, Actions runner.
|
||
│ ├── livekit/ # LiveKit server for real-time audio/video in tutor sessions.
|
||
│ │ ├── Dockerfile # Extends official LiveKit image, copies config.
|
||
│ │ └── livekit.yaml # LiveKit config: API keys, room settings, agent integration for AI tutor.
|
||
│ └── postgres/ # PostgreSQL with pgvector.
|
||
│ ├── Dockerfile # Extends postgres image, installs pgvector extension.
|
||
│ └── init/ # Initialization scripts.
|
||
│ └── 00-pgvector.sql # SQL to create pgvector extension on db init.
|
||
│
|
||
└── docs/ # Documentation: architecture, APIs, etc.
|
||
└── architecture.md # Detailed system explanation, including the provided Mermaid diagram.
|
||
```
|